
Abstract— We study the resilience of all-optical network (AON) 

architectures under in-band crosstalk attacks. We first develop a 

cross-layer model that captures attack propagation based on 

probabilistic graphical models. At the physical layer, we use a 

directed probabilistic graph (Bayesian Belief Network) to model 

the attack propagation under static network traffic and a given 

source of attack. At the network layer, we use an undirected 

probabilistic graph (Random Field) to represent the probability 

distribution of active connections in the network. The cross-layer 

model is obtained by combining the physical- and the network-

layer models into a factor graph representation. We then derive 

bounds on the network resilience for regular topologies. We show 

that for ring, star, and mesh-torus networks with link-shortest 

path routing and all-to-all traffic, the average network resilience 

loss grows linearly with respect to the network load when the 

network load is light; grows polynomially with respect to the 

probability of attack propagation from node to node along the 

attacker’s route. We then show that the sum-product algorithm 

can be used for computationally efficient evaluation of network 

resilience for irregular topologies. 

I. INTRODUCTION

All-optical network (AON) is a promising technology for 
next-generation optical networks. However, AONs are 
susceptible to malicious attacks because the signals remain in 
optical domain within the network and are difficult to be 
monitored closely [1]. Due to the high data rate supported by 
AONs, even attacks of a short duration can result in a large 
amount of data loss. Hence, security of AONs upon attacks has 
become an important issue, where an open question is how to 
incorporate security against malicious attacks in the design and 
engineering of AON architectures. Investigations of this 
question are important as AONs are still at an early stage of 
deployment. The goal of this work is to study how network 
architecture impacts resilience in the context of in-band 
crosstalk attacks in AONs. 

Crosstalk attacks were first studied in [1]. Crosstalk in 
AONs is caused by signal leakage among different inputs at 
non-ideal network devices, e.g. optical switches. The most 
detrimental type of crosstalk is in-band crosstalk, where the 
crosstalk element is within the same wavelength as the signal. 
In-band crosstalk attacks can happen at fiber links or network 
nodes. In this work, we consider the case where an attacker 
gains legitimate access to a network node and inserts a flow 
with strong signal power into the network [1][2]. Due to the 
crosstalk effects of wavelength switches, a small fraction of the 
signal from the attacker’s flow may leak into other normal 
flows in the shared switching plane. The leakage superimposed 
onto normal flows may exceed a predetermined threshold for 
quality of service requirement, and those flows are defined as 
being affected by the attack at network nodes.  

To investigate the impacts of network architectures against 
in-band crosstalk attacks, we focus on three aspects of network 
architectures: (a) physical layer vulnerabilities, which are 
related to attack propagation and determined by  the 
characteristics of optical devices, (b) physical topology of the 
AON, and (c) wavelength usage at the network layer, which is 
characterized by the load of the network. Our goal is to 
quantify the effects of these factors in mitigating the impacts of 
crosstalk attacks. Here, a major challenge is to characterize the 
interactions of different aspects of network architecture during 
crosstalk attack propagation, which is cross-layer in nature.  

 We apply probabilistic graphical models [3] to characterize 
the cross-layer interactions during attack propagation. 
Specifically, at the physical layer, a directed probabilistic graph 
(Bayesian Belief Network) is developed to model attack 
propagation under static network traffic and a given attack 
source. At the network layer, an undirected probabilistic graph 
(Random Field) is used to represent the probability distribution 
of active connections using wavelengths of the same nominal 
value. The physical- and the network-layer models are then 
combined into a cross-layer model using a factor graph 
representation [4].  

The cross-layer model is developed using a bottom-up 
approach and provides an explicit representation of the 
dependencies between the physical- and the network-layer. 
Furthermore, it facilitates the study of network architecture on 
network resilience. Specifically, for regular topologies, we 
derive bounds on the network resilience. For irregular 
topologies, the cross-layer model provides computationally 
efficient methods for studying the resilience. 

II. PROBLEM FORMULATION

Define the topology of an AON as an undirected graph 

( , ),V EG  with V  being the set of nodes and E  being the set 

of bi-directional links. Denote iV ~ jV  if there is one bi-

directional link between node iV  and jV . Assume that all 

connections supported by the network are bi-directional and 
use routes in a fixed set R . Each bi-directional connection 
consists of two unidirectional flows in each direction using the 
same wavelength on the same network route.1 Furthermore, on 
the same network link, different bi-directional connections 
must use distinct wavelengths. Assume that there are no 
wavelength converters in the AON. This work considers 
single-source in-band crosstalk attacks [2]. That is, crosstalk 
attack is started at the source node of a unidirectional flow on 
wavelength of nominal value , and propagates to downstream 

1
Each bi-directional link is made up of two optical fibers, one for each 

direction. Throughout the paper, the term “connection” is used specifically for 

bi-directional traffic; the term “flow” is used for uni-directional traffic.
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flows that use wavelengths of the same nominal value. As this 
work focuses on in-band crosstalk attacks, “flows” and 
“connections’’ are to be used in the rest of the paper without 
referring to associations with wavelength .

The problem we shall consider includes: (a) developing the 
cross-layer model, and (b) using the model to quantify the 

network resilience. Let iS  be a random variable that denotes 

the number of active flows affected by the in-band crosstalk 

attack at the switching plane of node iV . ( : )iS iS V

corresponds to the number of affected flows at all nodes in the 

network. Let ijN  denote the status of route ijr  between node i

and node j , where ijr R : 1ijN  if there is an active 

connection on route ijr ; 0ijN , otherwise. Then Vector 

( : )ij ijN rN R  represent the status of all routes in R .

Denote sdf  as the flow that starts from node s  and terminates 

at node d . Then we need to obtain the following quantities to 

characterize attack propagation in the network.

(a) ( | , ) :f sdP R fS N n The probability distribution of the 

number of flows affected at the switching plane of each 

network node given the status of network routes n  and the 

source of attack fR , where fR  denotes the unidirectional 

flow where the attack originates. This probability captures 

attack propagation under static network traffic n  and a given 

source of attack sdf , and is to be characterized by directed 

probabilistic graph in Section III A.

(b) ( | ) :f sdP R fN The probability distribution of the status 

of network routes given the source of attack, which is to be 

captured by an undirected probabilistic graph in Section III B.

(c) ( | )f sdP R fS : The probability distribution of the number 

of flows affected at each node given the source of attack. This 

models attack propagation under dynamic traffic when the 

attack starts on flow sdf . This combines the physical- and the 

network-layer models from (a) and (b), and shall be described 

using a factor graph representation in Section III C.  

The cross-layer model is then used to study network 

resilience based on the network resilience loss and average 

network resilience loss defined as follows. 

Definition 1: Given that there is a crosstalk attack started on 

flow sdf , the network resilience loss is defined as

[ ]
sd sdi

f f iV
M E S

V
,                     (1) 

where [ ] ( | )
sd i

f i i i i f sdS
E S s P S s R f  is the expected 

number of affected flows at node iV  given the source of the 

attack.
sdfM shows how resilient a network is when the attack 

starts from a particular flow.  

Definition 2: The average network resilience loss is defined 

as [ ],
f sdR fM E M where [ ]

fRE  stands for the expectation 

over the source of the attack fR , i.e.,

( )
sdsd

f f sdf
M M P R f , (2)

where ( ) ( 1) 2 | |f sd sdP R f P N R , under the assumption 

that each network route in R  is equally likely to be the 

attacker’s route, and the attack is started on one of the two  
flows on the attacker’s route with equal probability. 

III. CROSS-LAYER MODEL OF ATTACK PROPAGATION

We first model attack propagation under static network 

traffic and a given source of attack. 

A. Physical-Layer Model 

The prior work, e.g. [2], assumes that crosstalk attacks 
propagate in a deterministic fashion. This assumption holds for 
attack propagation in a given network infrastructure with 
deterministic jamming power at the source node of attack. 
However, the propagation is random if the strength of the 
jamming power at the source node is random. The stronger the 
jamming power inserted by the attacker, the farther an attack 
may propagate in the network. As he jamming power of the 
attacker at the source node of attack can have a wide range of 
values, in this work, we assume random jamming power at the 
source node of attack.

Consider that the crosstalk attack started on flow .sdf  Define 

the set of nodes traversed by flow sdf  as 1 2{ , ,..., }
sdf kV V VV ,

with 1V  and kV  being the source and destination of flow .sdf

Then the crosstalk attack may propagate along route sdr .

Denote the signal power of flow sdf  in the switching plane of 

node iV  as a random variable , 1, 2,... .iU i k  The attenuation 

of the attacker’s jamming power within the network can be 
captured using deterministic functions that depend on the 
characteristics of optical devices at the physical layer [5].

Let the status of node iV  be a random variable iX , where 

1iX  if the level of crosstalk incurred by normal flows from 

the attacker’s flow at the switching plane of node iV  exceeds 

the threshold for a Quality of Service (QoS) constraint, and 

0iX  otherwise. Then each node in 
sdfV may be affected due 

to the high signal power of the attacker’s flow. Normal flows 

that are affected at the switching plane of a node , 1,...,iV i k ,

may have increased power due to the crosstalk superimposed 
by the attacker’s flow. However, these flows are assumed to 
have no attacking capability, as their crosstalk leakage to other 
flows in the same switching plane is negligible. Currently 
optical switches with a crosstalk ratio much less than -35dB are 
commercially available. Thus, we assume that only nodes 
along the attacker’s route may be affected by the crosstalk 
attack.

Then it suffices to focus on ( : )
sd sdf i i fX VX V , which

denotes the status of all the nodes along the attacker’s route. 
Assume that, under normal operations, the amplifiers work at 
gain-clamped region and make up for the signal losses between 
two network nodes. It can be shown that the jamming power of 

flow sdf  at node 1iV  is no more than its jamming power at 

node , 1,..., 1.iV i k  Assume that the optical switches in the 

network have the same crosstalk ratio and threshold of 
crosstalk leakage for the definition of node affection, it can be 

proved that { : }
sdi i fX V V  form a Markov Chain [5]. 

Furthermore,  

1( 1 | , )i i i f sd i iP X X x R f x , 1,2,..., 1,i k         (3) 

and 1( 1) 1P X . Here 1( 1 | 1, )i i i f sdP X X R f  is 

the conditional probability that characterizes the attack 
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propagation at the physical layer, where the values of 'i s  are 

determined by physical layer parameters such as: nodal loss 
ratios, amplifier gain characteristics, and fiber attenuation 
ratios (see [5] for details). In the rest of the paper, we assume 

that
,

i s  are known.

Next we consider the number of active flows at node iV . Let 

ijR  be the set of network routes that use link ij . Under static 

traffic,
uv ij

uvr
n

R
 corresponds to the number of flows that 

enter the switching plane of node iV  through link ij ;

ih ij
ihr

n
R

 corresponds to the number of flows that are locally 

originated at node iV  and enter the network through link ij .

Hence, under static network traffic, the number of affected 

flows at the switching plane of node ,
sdi i fV V V  is given by 

~

( | , , )

1, { }& 1;

1 & 0,

0, .

i j uv ij ih ij

i i i i f sd

i uv ih iV V r r

i i

P S s X x R f

if s n n X

or s X

otherwise

R R

N n

      (4) 

This means that, when node iV  is affected by attack, all the 

active flows at the switching plane of node iV  are affected by 

the attack; otherwise, if node iV  is not affected by the crosstalk 

attack, only  flow sdf  is affected by the attack at node iV .

Combining (3) and (4), we have the physical layer attack 
propagation model,  

1

1

1 1

( | , )

( | , ) ( | , , ),

sd

fsd

f f sd

k k

i i f sd i i f sd

i i

P R f

P X X R f P S X R f
X

S N n

N n
  (5)

where ( : )
sd sdf i i fS VS V , and ( : )

sd sdf i i fVX X V .

Therefore, under static network traffic (given N n ),

( , : )
sdi i i fX S V V  forms a directed probabilistic graph 

(Bayesian Belief Network). Each node in the Belief Network 

represents either iX  or iS ,
sdi fV V  There is one directed 

edge from iX  to 1iX  and one directed edge from iX  to iS

respectively. Note that, given N n  and i iX x , iS  is 

deterministic, but iS  is included for an explicit graphical 

representation of attack propagation. 

Fig. 1 shows an example of a simple mesh network where all 
the route in R  marked in dashed lines. Suppose that the 
crosstalk attack is started on flow BD. Then the Bayesian 
Belief Network representation of attack propagation is shown 
in Fig. 2.

Fig. 1. A mesh network with 11 routes.  

BX CX DX

BS CS DS

Fig. 2. Bayesian Belief Network representation when the attack started on 

flow BD; mesh network in Fig. 1.  

B. Network-Layer Model 

To characterize attack propagation under dynamic network 
traffic, we need to develop a network-layer model, 

( | ).f sdP R fN It suffices to find ( )P N , which can be 

characterized by an undirected probabilistic graph.

The network-layer model is formed as follows. Each vertex 
in the undirected probabilistic graph represents the status of a 

route , .ij ijN r R  Furthermore, the status of all network routes 

that share the same link forms a clique. For instance, Fig. 3 
shows the undirected probabilistic graph representation of the 
example network in Fig. 1. In [6], it has been shown that the 
steady state distribution of the number of calls in progress in 
loss networks without control form a Markov Random Field 
(MRF), which is one type of undirected probabilistic graph. 
Here we generalize the MRF representation in [6] to an 
undirected probabilistic graph representation to include the 
dependence among different routes due to the capacity 
constraint and the network load.

Fig. 3. Undirected Probabilistic Graph representation of network 

layer; mesh network in Fig. 1. 

The joint probability distribution of  N  can be obtained by 

specifying proper clique potentials. Specifically, let the clique 

be , { : }ij ij sd sd ijC C N r R . Let the potential function of ijC

be ij . Then, (1) 0ij  if and only if the capacity constraint 

is satisfied, i.e., at most one connection is active on routes in 

ijR (at each link, wavelength  can only be used for one 

connection); (2) ij ij  if there is an active connection on 

link ij ; otherwise,  1ij ij , where 0 1ij . Then, the 

joint probability of the status of all routes in R satisfies

(1 )

1( ~ )

1
( ) (1 ) ( ),

uvruv ijuvruv ij

uv iji j

N
N

ij ij uvrV V
P I N

Z

R
R

R
N

N    (6)

where 1( ) 1
uv ij

uvr
I N

R
 if 0

uv ij
uvr

N
R

 or 1; and  

1( ) 0
uv ij

uvr
I N

R
otherwise. Thus the dependencies of routes 

that result from the capacity constraints are captured. 
Meanwhile, the wavelength load of the network, i.e., the 
probability that wavelength  is used at link ij ’s, is 

characterized by parameters ij ’s. When ij , ~i j , we 
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can relate  to the wavelength load through the following 

proposition.

Proposition 1: Let  denote the average wavelength load 

in the network, ( ) ~
[ | |]

i j uv ij
P uvV V r

NN R
EE . If in (6), 

ij , ~i j , then  monotonically increases in .

For simplicity, in the rest of the work, we assume that 

ij , ~i j .

C. Cross-Layer Model 

The cross-layer model can be obtained by combining the 
physical- and the network-layer model using a factor graph [4], 
which corresponds to the following joint probability, 

( , , | )

( , | , ) ( | ),

sd sd

sd sd

f f f sd

f f f sd f sd

P R f

P R f P R f

X S N

S X N N
       (7) 

where ( : ) and ( : )
sd sd sd sdf i i f f i i fX V S VX V S V .

The application of factor graph provides two advantages: 

(1) It shows the intricate dependencies among different 

network components during a crosstalk attack; (2) it provides 

computationally efficient algorithms to evaluate the network 

resilience loss, which shall be discussed in Section IV.

Fig. 4 shows the factor graph representation for the mesh 
network in Fig. 1 when the attack is started from flow BD. The 
lower portion of the factor graph represents attack propagation 
at the physical layer. As the attack may propagate from node 

iV  to 1iV , 1,
sdi i fV V V , iX  and 1iX  are connected to the 

same factor node 1( | , )i i f BDP X X R f . Furthermore, the 

number of affected flows at node iV  is determined by iX  and 

routes that traverses node iV . Therefore, iS , iX , and those 

routes passing through node iV  are connected to the factor 

node that corresponds to the conditional probability in (4).

The upper portion of the factor graph characterizes the 

dependence at the network layer. All the network routes that 

share a common network link ij  are connected to the clique 

function ij  in (6). Here, the factor graph provides an explicit 

representation of the dependencies among different network 

components during attack propagation.

NCE

SB SDSC

XC XDXB

NBF NAF NAB NAC NCD

NBD = 1

NBC NDE NEG NDG

P(X
C
|X

B
)

P(S
B
|X

B
, N)

Clique function of

Link AB

Fig. 4. Factor graph representation of mesh network in Fig. 1; attack 

started from flow BD.

IV. NETWORK RESILIENCE

We now use the cross-layer model to study network 

resilience. For simplicity, we assume that , .
sdi i fV V

A. Regular Topologies 

We first derive analytical results on network resilience for 
regular network topologies under a given wavelength load 

and physical layer vulnerability .  The proofs and derivations 

can be found in [5].  

Theorem 1: For a ring network, assume the route set R
consists of the two-link disjoint routes between each pair of 

nodes in the network. Let k  be the number of nodes traversed 

by the attacker’s flow sdf . Then, the network resilience loss 

sdfM satisfies

1 1

1 12(1 ) 2(1 )
sd

k k

fv M v ,              (8) 

where 1

1 1
2

k i

i
v k . Furthermore, for 10 ,

( )o , and the upper and the lower bounds in (8) meet  
1

1 2(1 ) ( )
sd

k

fM v o .                       (9) 

Theorem 2: For a star network, assume that the route set R
consists of the routes between each pair of nodes in the 
network. Let , 1,m m  be the number of nodes in the network. 

Denote the hub node of the star network as mA .
sdfM satisfies,

2

3 ( 2) , , 1,..., 1,

3 ( 2) , , 1,..., 1,

4 ( 3) , .

i m

sd m i

sd A A

f sd A A

m if f f i m

M m if f f i m

m otherwise

     (10) 

2

3 2( 2) , , 1,..., 1,

3 2( 2) , , 1,..., 1,

4 2( 3) , .

i m

sd m i

sd A A

f sd A A

m if f f i m

M m if f f i m

m otherwise

  (11)

Furthermore, for 10 , the bounds in (10) and (11) are 

tight, and 

2

3 2( 2) ( ), , 1,..., 1,

3 2( 2) ( ), , 1,..., 1,

4 2( 3) ( ), .

i m

sd m i

sd A A

f sd A A

m o if f f i m

M m o if f f i m

m o otherwise

 (12)

We compare 
sdfM  for ring and star networks. In both cases, 

sdfM  is linearly increasing in  for 10 . However, for 

ring network, 
sdfM is polynomially increasing in ; whereas 

for star network, 
sdfM  is linearly increasing in . For ring 

networks,
sdfM  is linearly increasing in k  (the number of 

nodes in 
sdfV ). In contrast, for star networks, 

sdfM  is linearly 

increasing in m (the number of nodes in the network).  

We also derive upper and lower bound of 
sdfM for arbitrary 

physical topologies and summarize the results in Table I, where  

| |
sdfE  is the number of links that are incidental on nodes in the 

set
sdfV , and id  is the nodal degree of  node iV .
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    bounds      Upper bound of  
sdfM  Lower bound  of 

sdfM

1 1
2 (4 2 ) (1 )

k

ii
d k O 2 (1 )k O

0 12 1 ( )k d O 1 ( )k O

Table I 

Bounds of Network Resilience Loss 
sdf

M

In addition, we compare the average resilience loss M for
ring, star, and mesh-torus networks, and summarize the result 
in Table II.  It can be observed that: (1) When the network load 

is low ( 10 ), M is ( )O m . This is because when the 

load is close to 0, the network is most likely in either of two 
states: (a) there is no active connection in the network; or (b) 
there is an active connection of link length 1; (2) When the 
network load is high ( 1), the star network is the least 

resilient, with M  being ( )O .  This is because, for the star 

network, nodes in the set ,
sdf sdrV R , has the most number 

of neighboring links. Ring and mesh-torus networks show 

good network resilience in ( )O m .

M 0 1

Ring network (3 ) ( 1)m (1 )O m

Star network (3 ) m ( )O

Mesh-torus 2 (3 ) ( 1)m
(1 (1 ) ), 1,

(1 ), .

O m if

O m otherwise

Table II 

Average Network Resilience Loss (M)

B. Irregular Topologies 

For networks with irregular topologies, we resort to the 
sum-product algorithm on the factor graph. The sum-product 
algorithm is then compared with the exact resilience 
calculation through enumerations of all network traffic 
patterns. Enumeration has computational complexity 
exponential in the number of routes, and is not applicable to 
networks with a large number of routes. The sum-product 
algorithm provides exact or approximate results depending on 
whether the factor graph is loopy or not [4]. We consider three 
networks shown in Fig. 5. In each network, the route set has 21 
routes, which corresponds to one link-shortest route between 
each pair of nodes. Using the sum-product algorithm, we first 

compute 
sdfM , the network resilience loss given the source of 

attack. We then compute the average network resilience loss 
M .

Fig. 5. 7-node ring, double-ring, and mesh networks.

Fig. 6 depicts the relationship between  and average 

network resilience loss M  for networks in Fig. 5 with 0.6 .

It shows that: (1) M  monotonically increases with , in 

networks with all-to-all traffic and link-shortest path routing. 
Moreover, for low load, M increases linearly with ; (2) The 

sum-product algorithm results in an almost exact M  even 
though the factor graphs representations for the mesh and ring 
networks contain loops. The performance of sum-product 
algorithm is not as accurate yet acceptable for the double-ring 
network. This suggests that the sum-product algorithm can be 
used for large networks where exact calculation of resilience is 
infeasible.
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Fig. 6. Average network resilience loss vs. wavelength load; 

0.6 , networks in Fig. 5. 

V. SUMMARY

In this work, we have studied resilience of all optical 

network architectures against crosstalk attacks. We have 

shown that probabilistic graphical models can integrate attack 

propagation at the physical layer and dependent connections at 

the network layer into a cross-layer model. The cross-layer 

model provides an explicit representation of the dependencies 

between the physical and the network layer. Furthermore, the 

model facilitates analytical study of network resilience on 

regular topologies and provides the computationally efficient 

sum-product algorithm for evaluation of network resilience of 

irregular topologies. We have found that the ring and mesh-

torus network show good resilience, which are inversely 

proportional to the number of the nodes in the network.   

There are several open issues for future research. One 

direction is to develop physical-layer models of attack 

propagation under less stringent conditions. 
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